Friday, November 9, 2012 Agenda: •TISK; No MM. •Lesson 5-6: Compare side lengths and measures using the Hinge Theorem. • Homework: 5-6 Worksheet TISK Problems 1) Simplify: ⁹⁰/_{√21} 2) Simplify: √1352

R	Example 1. Given a triangle. Prove that it has, at most, one obtuse angle. Statement we are trying to prove: A triangle has no more than one obtuse angle. Assume the opposite is true: A triangle may have more than one obtuse angle.				
	Statements	Reasons	The last statement is NOT POSSIBLE;		
	In a triangle, $m \angle 1 > 90^\circ$ and $m \angle 2 > 90^\circ$	Assumed	angle measures in a triangle cannot be negative. Therefore, our		
	$m \angle 1 + m \angle 2 > 180^{\circ}$	Addition Property			
	$m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$	∆ Sum Th.	original assumption must be FALSE.		
	$m \angle 1 + m \angle 2 = 180^\circ - m \angle 3$	Subtraction Property of =			
	$180^\circ - m \angle 3 > 180^\circ$	Substitution			
	$-m \angle 3 > 0^\circ$ $m \angle 3 < 0^\circ$	Subtraction Prop + Property of =	erty of =		

R	Example 2. Prove that there is at most one line through a point that is perpendicular to a given line. Statement we are trying to prove: Given a line and a point not on that line, there is only one line through that point that is perpendicular to the given line. Assume the opposite is true: Through a point there is more than one line perpendicular to the given				
	Statements	Reasons	₽		
	$\overline{PA} \perp \overline{AB} \text{ and } \overline{PB} \perp \overline{AB}$	Assumed			
	P, A, and B are 3 noncollinear points and form a Δ	Definition of a Trian			
	$\angle PBA$ and $\angle PAB$ are Rt. $\angle s$	Def. Perpendicular			
	The last statement is NOT POSSIBLE; a Δ may not contain more than 1 right \angle . Therefore, our original assumption must be FALSE.				

Monday, November 12, 2012

Agenda

TISK & MM

Complete Lesson 5-6
 Homework: Finish Worksheet 5-6/Study for Quiz tomorrow

TISK Problems 1) Simplify: $\frac{15}{\sqrt{50}}$

2) Simplify: $(x - \sqrt{15})^2$ 3) Factor completely: $12x^2 + 29x - 8$

We will have 2 Mental Math problems today.

If you have a signed quiz or test to show me, have it out when I come to your seat.

P	Homework Check				
X	Indirect Proof #16:				
	Statements		Reasons		
	$I. m \angle D > m \angle E$		I. Given		
	2. EF = DF		2. Assumed		
	3. $\overline{EF} \cong \overline{DF}$		3. Def. \cong Segments		
	4 . ∠ $D \cong ∠E$		4. Isosceles Triangle Th.		
	$5 m \angle D = m \angle E$		5. Def. $\cong \angle s$		
	Statement 1 & Statement 5 are contradictions.				
	Statements	Reasons			
	$1. m \angle D > m \angle E$	I. Given			
	2 . <i>EF</i> < <i>DF</i>	2. Assumed 3. If 1 side of a Δ is longer than another side, then the \angle opp, the longer side is larger than the angle opposite the shorter side.			
	$3. m \angle D < m \angle E$				
	Statement 1 & Statement 3 are contradictions.				

• Chapter 5 Test is on Wed., Nov. 28th.